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Analysis of Ninety Degree Flexure Tests
for Characterization of Composite
Transverse Tensile Strength

T. Kevin O'Brien ' and Ronald Krueger *

TU.S. Army Research Laboratory, Vehicle Technology Directorate
‘ICASE
NASA Langley Research Center, Hampton, Virginia, U.S.A.

SUMMARY: Finite element (FE) analysis was performed on 3-point and 4-point
bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy
composite beams to identify deviations from beam theory predictions. Both linear and
geometric non-linear analyses were performed using the ABAQUS® finite element code.
The 3-point and 4-point bending specimens were first modeled with two-dimensional
elements. Three-dimensional finite element models were then performed for selected 4-
point bending configurations to study the stress distribution across the width of the
specimens and compare the results to the stresses computed from two-dimensional plane-
strain and plane-stress analyses and the stresses from beam theory. Stresses for all
configurations were analyzed at load levels corresponding to the measured transverse
tensile strength of the materials.

For 3-point bend test configurations, both the linear and geometric non-linear 2D plane-
strain and plane-stress analyses yielded similar results. The maximum tensile stresses
under the center load nose calculated from the FE analysis were slightly lower than
stresses predicted by beam theory. The difference (maximum of 4%) was greatest for the
shortest span analyzed.

For 4-point bend test configurations, both the plane-stress and plane-strain 2D linear
analysis results agreed closely with beam theory except right below the load points.
However, 2D geometric non-linear analyses deviated slightly from beam theory
throughout the inner span as well as below the load points. Plane-stress results deviated
from beam theory more than plane-strain results. The maximum tensile stresses between
the inner span load points were slightly greater than the beam theory result. This
difference was greatest (maximum of 4%) for configurations with the shortest spans
between inner and outer load points. A contact analysis was also performed in order to
investigate the influence of modeling the roller versus modeling the support as a simple
boundary condition at one nodal point. A configuration with the shortest span between
inner and outer load points was modeled for the 24-ply and 36-ply IM7/8552 layups and
the 24-ply S2/8552 layup. Generally, for all configurations investigated, the discrepancy
between the FE and beam theory results became smaller (max. 2%) when the rollers were



modeled in conjunction with contact analysis. Hence, the beam theory yields a reasonably
accurate value for the maximum tensile stress in bending compared to 2D FE analysis.

The 3D linear FE analysis of the 4-point configurations agreed closely with beam theory,
except right below the load points. The 3D linear FE results at the specimen edge agreed
with 2D plane-stress results, and the 3D linear FE results in the center of the specimen
agreed with 2D plane-strain results. The 3D geometric non-linear analyses deviated
slightly from beam theory throughout the inner span as well as under load points. The 3D
geometric non-linear FE results at the specimen edge agreed with the 2D plane-stress
results. For the 12.7 mm (0.50 in.) wide IM7/8552 specimens, the 3D geometric non-
linear FE results in the center of the specimen agreed with 2D plane-strain results.
However, for the 6.35 mm (0.25 in.) wide S2/8552 specimens, the 3D geometric non-
linear FE results in the center were less than 2D plane-strain results, indicating that these
specimens were not wide enough to achieve full constraint.

The utility of the FE results is primarily for guidance in the choice of beam thickness,
width, and configuration. For the 3-point bend configuration, longer spans are preferred
to minimize the error in beam theory data reduction. Similarly, for the 4-point bend
configurations, a longer span between the inner and outer load noses, at least equal to the
span between the inner load noses, results in less error compared to beam theory. In
addition, these FE results indicate that the span between the inner load noses should not
be too long to avoid obtaining a non-uniform maximum stress between the inner load
noses. Finally, the 3D analysis indicates that specimens should be sufficiently wide to
achieve a fully constrained state of plane-strain at the center of the specimen width.

KEYWORDS: transverse tensile strength, matrix cracking, finite element analysis, glass
epoxy, graphite epoxy, bending tests

INTRODUCTION

Matrix ply cracking is a common initial damage mechanism in fiber reinforced
composites. Matrix ply cracking alone is seldom catastrophic for laminates subjected to
membrane loading. However, for composite structures that undergo bending, or other
out-of-plane loading, the formation of matrix cracks may lead to immediate catastrophic
delamination formation and growth [1,2]. Hence, accurate characterization of the
transverse tensile strength of composite materials is needed to accurately predict matrix
ply cracking in these structures.

Previously, 90 degree unidirectional glass-epoxy laminates [3] and carbon-epoxy
laminates [4] were tested in three and four point bending to characterize composite
transverse tensile strength. The influence of edge flaws due to machining, and surface
flaws due to manufacture and handling, were assessed by testing specimens in their as-
manufactured and machined condition. In addition, specimens with polished edges,
and/or bottom failure surfaces, were tested. Subsequent 3-point and 4-point bend tests of
glass-epoxy lamina and carbon-epoxy lamina [5] were also performed under cyclic



loading. In each of these studies, the maximum tensile stress at failure under monotonic
and cyclic loading was determined using beam theory expressions.

The goal of this investigation was to study under which conditions simple beam theory
yielded sufficiently accurate results when used to calculate the stresses in the 3-point and
4-point bending specimens. For the entire investigation, the ABAQUS® finite element
software was used. For comparison, both linear and geometric nonlinear analysis
procedures were used. The three-point and four-point bending specimens were first
modeled entirely with two-dimensional elements. Then, three-dimensional finite element
models were used to study the stress distribution across the width of the specimens and
compare the results to the stresses computed from two-dimensional plane-strain and
plane-stress analyses and the stresses from simple beam theory.

Materials

FE analyses were performed on two materials, S2/8552 glass-epoxy [3,5] and IM7/8552
carbon-epoxy [4,5]. Material properties used in the analysis are given in Table 1. The
S2/8552 specimens were cut from a 24-ply panel. The average panel thickness was 5.56
mm, corresponding to an average ply thickness of 0.231 mm. The IM7/8552 specimens
were cut from both 24-ply and 36-ply panels. The average panel thickness was 3.29 mm
for the 24-ply panel and 4.94 mm for the 36-ply panel, corresponding to an average ply
thickness of 0.137 mm.

Specimen Configurations

Three-point bending tests were evaluated in three configurations (A, B, and C)
corresponding to span lengths of 25.4, 50.8, and 76.2 mm (figure 1(a)). Four point
bending tests were evaluated using the four configurations (Al, A2, B2, B3) shown in
figure 1(b).

Beam Theory

For the three point bending configurations shown in figure 1(a), with span length, s, and
width, b, the tensile bending stress distribution at the bottom of the beam is shown in
figure2a. Specimen strengths were determined in references 3&4 from the beam theory
expression for the maximum tension stress, Omax, under the center load nose using the
maximum load at failure, P., and the average specimen thickness, tayg,

3P.s
Gmax = 2
2bt,,,

(1

For the four point bending tests shown in figure 1(b), with outer span, s, inner span, s-/,

and width, b, the tensile bending stress distribution at the bottom of the beam is shown in
figure 2b. Specimen strengths were determined in references 3&4 from the beam theory



expression for the maximum uniform tension stress, Gmax, between the inner load points
using the maximum load at failure, P., and the average specimen thickness, tayg,

3P/
Gmax = 2
2bt?,

(2)

Finite Element (FE) Analysis Formulation

Two typical two-dimensional finite element models of the specimens, boundary
conditions and loads applied in the simulations are shown in Figure 3. A typical three-
dimensional finite element model of the specimens used in the simulations is shown in
Figure 4. For both the 2D and 3D analyses, the ABAQUS® input file was generated
automatically using a FORTRAN routine (see Appendix 1). This user-written routine
required only the input of the geometrical data, the material property data given in Table
I, and the mesh parameters shown in Figure 3. The use of this routine allowed the quick
generation of a large number of models for the different specimen configurations and
simplified the otherwise tedious mesh generation and refinement.

The two-dimensional specimen cross sections were modeled using eight-noded
quadrilateral plane-strain (CPE8R) or plane-stress (CRS8R) elements using quadratic
shape functions and a reduced (2x2) integration scheme. These elements were selected to
avoid shear locking in bending, which is common in first-order, fully integrated elements,
such as CPE4 and CPS4 [6]. The numerical formulation of first order elements gives rise
to shear strains that do not really exist. Therefore, these elements are too stiff in bending,
and many elements over the thickness are required to obtain acceptable results. Elements
where a lower-order, reduced integration are used to form the element stiffness, such as
the CPE8R and CPS8R elements used in this study, usually require fewer elements
through the thickness, provide more accurate results in bending, and yield reduced
running times. Loads were prescribed at single nodal points in the models. However, for
configuration B2 that exhibited the greatest deviation from beam theory, rollers were also
included in the model at the outside load points (see Appendix 2).

For the 3D analyses, specimens were modeled with ABAQUS" solid, twenty-noded,
C3D20R hexahedral elements using quadratic shape functions and a reduced (2x2x3)
integration scheme. The C3D20R element utilizes reduced integration to form the
element stiffness, and hence, provides accurate results in bending which yield reduced
running times compared to other 3D elements [6,7].

Computation of Stresses

Averaged stresses at nodes were computed along the bottom (tension) surface of the
beam specimens where the highest tensile stresses occur. The results were extracted for
additional post-processing directly from the ABAQUS® binary result file using a user
written FORTRAN routine (See Appendix 1) [6,7].



Two Dimensional FE Analysis Results
Three Point Bending

Figure 5 shows the finite element mesh for the S2/8552 glass epoxy material, 3-point
bend configuration A (figurela). The mesh is shown in the deformed position at the
failure load with the stress contours superimposed illustrating the compression stress near
the point of load application at the top of the beam and the high tensile stresses at the
bottom of the beam under the center load nose. Tension stress results at the bottom of the
beam will be quantified in later figures. Similar meshes were generated for the other 3-
point bend configurations in figure 1a using the technique described earlier.

The open symbols in figure 6 show the stresses calculated from the 2D, plane-strain,
linear finite element analysis, Opg, normalized by the maximum tension stress calculated

from the beam theory, Ot (Omax in equation 1). For comparison, the normalized stress
distribution from beam theory is superimposed on the finite element results. This
comparison indicates that the peak tensile stress calculated from the finite element
analysis is slightly (4%) less than the beam theory prediction. Similar results were
obtained for the 2D plane-stress linear finite element analysis, as well as the 2D
geometric non-linear plane-strain and plane-stress FE analyses. In order to establish the
accuracy of this comparison, the 2D geometric non-linear analysis was also performed
using a refined mesh as shown in figure 7. This analysis yielded more stress results in the
critical area under the load nose. However, this refined mesh yielded essentially no
change in the maximum stress calculated directly under the load nose, which was also
less than the beam theory (figure 8).

Figure 9 summarizes the peak stress comparisons for the 24-ply S2/8552 glass-epoxy 3-
point bend configurations in terms of percent AG, where

Ac =280 100 3)

Oprt

As shown in figure 9, the greatest difference between all the 2D FE analyses and the
beam theory was about 4% for the shortest span, configuration A. The longer span
configurations had difference between 1 % and 2%.

Figure 10 summarizes the peak stress comparisons for the 24-ply IM7/8552
carbon—epoxy 3-point bend configurations. The greatest difference between all the 2D FE
analyses and the beam theory was about 2% for the shortest span, configuration A. The
longer span configurations had differences of 1 % or less. Figure 11 summarizes the peak
stress comparisons for the 36-ply IM7/8552 carbon—epoxy 3-point bend configurations.
The greatest difference between all the 2D FE analyses and the beam theory was about
3% for the shortest span, configuration A. The longer span configurations had difference
between 1 % and 2%.



The results from figures 10-11 indicate that the beam theory results become less accurate
for thicker beams of a given span, and for shorter spans of the same beam thickness. This
is the same trend expected for the significance of transverse shearing deformation in 3-
point bending of beams. This shearing deformation is not reflected in the beam theory
equations 1 and 2.

Four Point Bending

Figure 12 shows the finite element mesh for the S2/8552 glass-epoxy material, 4-point
bend configuration Al (figurelb). The mesh is shown in the deformed position at the
failure load with the stress contours superimposed illustrating the compression stress
between the two inner load noses at the top of the beam and the high tensile stresses at
the bottom of the beam under the inner load noses. Tension stress results at the bottom of
the beam will be quantified in later figures. Similar meshes were generated for the other
4-point bend configurations in figure 1b using the technique described earlier.

The open symbols in figure 13 show the stresses calculated from the 2D plane-strain,
linear finite element analysis, Opg, normalized by the maximum tension stress calculated

from the beam theory, OpT ( Omax In equation 2). For comparison, the normalized stress
distribution from beam theory is superimposed on the finite element results. This
comparison indicates that the peak tensile stress calculated from the finite element
analysis is slightly less than the beam theory prediction just below the load nose as
observed in the 3-point bend case. However, the 4-point bend FE results become slightly
greater than the beam theory stress just inside the load nose before assuming the beam
theory result in the majority of the span between the inner load noses. Similar results
were obtained for the 2D plane-stress, linear finite element analysis. The 2D plane-strain
geometric non-linear FE analysis yielded a similar FE stress distribution, except the
plateau in the majority of the span between the inner load noses was larger (1.5%) than
the beam theory result (figure 14). The 2D plane-stress, geometric non-linear FE analysis,
yielded a similar FE stress distribution, but with an even greater discrepancy (2.5%) from
the beam theory between the two center load noses (figure 15). In order to establish the
accuracy of this comparison, the 2D geometric non-linear analysis was also performed
using a refined mesh as shown in figure 16. This yielded more stress results between the
inner load noses, but there was essential no change in the plateau of the distribution
between the inner load noses (figure 17). Figures 18 a-d compare the 2D geometric non-
linear plane-strain and plane-stress results in terms of percent AG (equation 3) between
the inner load noses for the four S2/8552 glass-epoxy 4-point bend configurations
(figurelb). For all four configurations, the plane-stress results differ from the beam
theory predictions by 0.5 to 1.5% more than the plane-strain results.

The 2D plane-stress geometric non-linear FE results in terms of percent AG (equation 3)
between the inner load noses are summarized for all four S2/8552 glass epoxy 4-point
bend configurations in figure 19. For the plateau in the majority of the span between the
inner load noses, the greatest discrepancy between the FE and beam theory results occurs
for configurations B2 (4%) and Al (2.5%). These two configurations have the shortest



span between the inner and outer load noses (12.7 mm). Figure 19 also illustrates the
non-uniform stress distribution between the inner load noses for the two configurations,
B2 and B3, with the greatest inner span, s-¢ = 50.8 mm. These same trends were noted

for the 24-ply (figure 20) and 36-ply (figure 21) IM7/8552 carbon-epoxy, 4-point bend
configurations. The thinner 24-ply laminate had slightly lower discrepancies (only 3% for
configuration B2, for example) than the thicker 36-ply laminate of the same material.
However, the non-uniform stress distribution between the inner load noses was more
pronounced in the thinner laminates.

Contact Analysis

A contact analysis was performed in order to investigate the influence of modeling the
roller versus modeling the support as a simple boundary condition at one nodal point (see
appendix 2). It was expected that accounting for the roller would change the contact
location and result in a shorter span, s, of the specimen and thus result in a different stress
distribution along the bottom surface of the specimen. The roller support was modeled
and corresponding contact analysis was performed for specimen configuration B2, only,
because discrepancy in stresses between the finite element and the beam theory results
were most pronounced for this configuration as shown in Figures 19-21. The B2
configuration was modeled for the 24-ply and 36-ply IM7/8552 layups and the 24-ply
S2/8552 layup. As shown in the appendix, for all configurations investigated the
discrepancy between the FE and beam theory results became smaller (max. 3%) when the
rollers were modeled in conjunction with contact analysis instead of simple supported
boundary conditions. Hence, the beam theory yields a reasonably accurate value for the
maximum tensile stress in bending compared to 2D FE analysis.

Three Dimensional FE Analysis results

The S2/8552 glass-epoxy material, 4-point bend configuration B2 (figurelb) was chosen
for the 3D analysis since it exhibited the greatest deviation from beam theory in the 2D
non-linear analysis. Figure 22 shows the finite element mesh for a 6.35mm wide S2/8552
glass-epoxy, 4-point bend configuration B2. The mesh is shown in the deformed position
at the failure load. The 3D model had the same in-plane mesh refinement as the 2D
analyses, but with ten elements across the specimen width.

Figure 23 shows the 3D geometric non-linear FE stress results in terms of percent AG
(equation3) between the inner load noses and across the specimen width. Near the load
noses, the stresses peak near the center of the specimen width. However, between the
load noses the stress peaks near the edges of the specimen. Ideally, the stresses
calculated near the specimen edges should be in good agreement with the 2D plane-stress
results and the stresses calculated near the center of the specimen should be in good
agreement with the 2D plane-strain results. Figure 24a compares the 3D stresses at the
specimen edge to the 2D plane-stress results for both the linear and geometric non-linear
cases. Good agreement was found in both cases, with only the non-linear case showing
the significant deviation from the beam theory result between the inner load noses. Figure
24b compares the 3D stresses at the center of the specimen width to the 2D plane-strain



results for both the linear and geometric non-linear cases. Good agreement was found for
the linear case, with no significant deviation from the beam theory result between the
iner load noses. However, the 3D non-linear case indicated a greater deviation from the
beam theory result between the inner load noses (4%) than did the 2D plane-strain result
(3%). This indicated that these beams were not quite wide enough to achieve a fully
constrained (plane-strain) condition at the specimen center.

To investigate the influence of specimen width further, a 3D analysis was also performed
for a 12.7mm wide, 24-ply, IM7/8552 carbon-epoxy, 4-point bend configuration Al
(figurelb). This configuration was used in reference 5 to characterize transverse tension
fatigue life. Figure 25 shows the finite element mesh for the 24-ply, IM7/8552 graphite-
epoxy material, 4-point bend configuration Al. The mesh is shown in the deformed
position at the failure load. The 3D model had the same in-plane mesh refinement as the
2D analyses, but with ten elements across the specimen width.

Figure 26 shows the 3D geometric non-linear FE stress results in terms of percent AG
(equation 3) between the inner load noses and across the specimen width. Figure 27a
compares the 3D stresses at the specimen edge to the 2D plane-stress results for both the
linear and geometric non-linear cases. Good agreement was found in both cases, with
only the non-linear case showing a slight deviation (1.5 %) from the beam theory result
between the inner load noses. Figure 27b compares the 3D stresses at the center of the
specimen width to the 2D plane-strain results for both the linear and geometric non-linear
cases. Good agreement was found for the linear case, with no significant deviation from
the beam theory result between the inner load noses. Furthermore, for this 12.7 mm wide
specimen, there was also good agreement between the 2D non-linear plane-strain solution
and the 3D non-linear solution at the center of the specimen width, indicating that a fully
constrained (plane-strain) condition had been achieved at the specimen center. Both the
2D and 3D non-linear analyses results indicated a slight (1.5%) deviation from the beam
theory at the specimen center.

Analysis of Results

Figures 28-30 compare the 2D stress analysis results for 3-point bend configurations A,
B, and C for the S2/8552, 24-ply IM7/8552, and 36-ply IM7/8552 materials, respectively,
to the histogram of failure locations measured for these materials [4]. The histograms
show the location and frequency of failures for the number of replicates tested of a given
configuration. These figures indicate that most failures occur near the center of the span,
but not always directly below the central load nose where the tensile stress is a maximum
(figure 2a). As noted in references 3-5, all failures do not occur directly below the load
nose because the failure is sensitive to the presence of flaws in the specimen
microstructure. Both the beam theory and the finite element analysis assume that the
material is uniform and homogeneous throughout. Hence, it would be meaningless to
reduce the data based on the FE stress at a given span location relative to the center load
nose because the failure is due to the local stresses associated with micro-structural flaws.
Rather, in order to characterize the strength and the associated volume dependence, data



are fit to either a normal or Weibull distribution ranked according to the calculated
maximum stress at failure from the beam theory [4,5].

Figures 31 a-d compare the 2D stress analysis results for 4-point bend configurations Al,
A2, B2, and B3, respectively, for the S2/8552 glass epoxy material to the histogram of
failure locations measured for these materials [3,4]. These figures indicate that most
failures occur near the center of the span, between the inner two load noses where the
tensile stress is a maximum (figure 2b). The remaining failures occur below the inner
load noses as was observed in the 3-point bend specimens.

Figures 32 a-c compare the 2D stress analysis results for 4-point bend configurations Al,
A2, and B2, respectively, for the 24-ply IM7/8552 carbon-epoxy material to the
histogram of failure locations measured for these materials [4]. Figures 33 a-d compare
the 2D stress analysis results for 4-point bend configurations Al, A2, B2, and B3,
respectively, for the 36-ply IM7/8552 carbon-epoxy material to the histogram of failure
locations measured for these materials [4]. Unlike the glass-epoxy material, a greater
percentage of failures occur below the inner load noses for all the configurations. In
reference 4, this was attributed to the large variability in specimen thickness observed in
the graphite material, which is not accounted for in either the beam theory or FE analysis,
but leads to a biased loading towards one, or the other, inner load noses in the
experiments.

The utility of the FE results is primarily for guidance in the choice of beam thickness,
width, and configuration. For the 3-point bend configuration, longer spans are preferred
to minimize the error in beam theory data reduction. Similarly, for the 4-point bend
configurations, a longer span between the inner and outer load noses, at least equal to the
span between the inner load noses, results in less error compared to beam theory. In
addition, these FE results indicate that the span between the inner load noses should not
be too long to avoid obtaining a non-uniform maximum stress between the inner load
noses. Finally, the 3D analysis indicates that specimens should be sufficiently wide to
achieve a fully constrained state of plane-strain at the center of the specimen width.

Conclusions

For 3-point bend test configurations, both the linear and geometric non-linear 2D plane-
strain and plane-stress analyses yielded similar results. The maximum tensile stresses
under the center load nose calculated from the finite element (FE) analysis were slightly
lower than stresses predicted by beam theory. The difference (maximum of 4%) was
greatest for the shortest span analyzed.

For 4-point bend test configurations, both the plane-stress and plane-strain 2D linear
analysis results agreed closely with beam theory except right below the load points.
However, 2D geometric non-linear analyses deviated slightly from beam theory
throughout the inner span as well as below the load points. Plane-stress results deviated
from beam theory more than plane-strain results. The maximum tensile stresses between
the inner span load points were slightly greater than the beam theory result. This



difference was greatest (maximum of 4%) for configurations with the shortest spans
between inner and outer load points. A contact analysis was also performed in order to
investigate the influence of modeling the roller versus modeling the support as a simple
boundary condition at one nodal point. The B2 configuration was modeled for the 24-ply
and 36-ply IM7/8552 layups and the 24-ply S2/8552 layup. Generally, for all
configurations investigated, the discrepancy between the FE and beam theory results
became smaller (max. 2%) when the rollers were modeled in conjunction with contact
analysis. Hence, the beam theory yields a reasonably accurate value for the maximum
tensile stress in bending compared to 2D FE analysis.

The 3D linear FE analysis of the 4-point configurations agreed closely with beam theory,
except right below the load points. The 3D linear FE results at the specimen edge agreed
with 2D plane-stress results, and the 3D linear FE results in the center of the specimen
agreed with 2D plane-strain results. The 3D geometric non-linear analyses deviated
slightly from beam theory throughout the inner span as well as under load points. The 3D
geometric non-linear FE results at the specimen edge agreed with the 2D plane-stress
results. For the 12.7 mm (0.50 in.) wide IM7/8552 specimens, the 3D geometric non-
linear FE results in the center of the specimen agreed with 2D plane-strain results.
However, for the 6.35 mm (0.25 in.) wide S2/8552 specimens, the 3D geometric non-
linear FE results in the center were less than 2D plane-strain results, indicating that these
specimens were not wide enough to achieve full constraint.

The utility of the FE results is primarily for guidance in the choice of beam thickness,
width, and configuration. For the 3-point bend configuration, longer spans are preferred
to minimize the error in beam theory data reduction. Similarly, for the 4-point bend
configurations, a longer span between the inner and outer load noses, at least equal to the
span between the inner load noses, results in less error compared to beam theory. In
addition, these FE results indicate that the span between the inner load noses should not
be too long to avoid obtaining a non-uniform maximum stress between the inner load
noses. Finally, the 3D analysis indicates that specimens should be sufficiently wide to
achieve a fully constrained state of plane-strain at the center of the specimen width.
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Appendix 1

A general overview of the analysis procedure is given in Figure Al. The ABAQUS®™
mput file was generated automatically using a user written FORTRAN routine
(genbeam.f in figure Al), which, in addition to the material data given in Table I, only
required the input of the loading, the geometrical data and mesh parameters as shown in
Figures 3 and 4. The use of this routine (flow chart shown in Figure A2) allowed the
quick generation of a large number of models for the different specimens and simplified
the otherwise tedious mesh refinement and convergence studies.

The stresses along the bottom side/surface of the beam specimens were of prime interest
as this is the location where the highest tensile stresses are to be expected. Therefore, the
averaged stresses at nodes were extracted for additional post-processing directly from the
ABAQUS® binary result file using another user written FORTRAN routine (stress.f in
figure A1) the flow chart of which is depicted in Figure A3.
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Appendix 2
Finite Element (FE) Analysis Formulation

A contact analysis was performed in order to investigate the influence of modeling the
roller versus modeling the support as a simple boundary condition at one nodal point. It
was expected that accounting for the roller would change the contact location and result
in a shorter span, s, of the specimen and thus result in a different stress distribution along
the bottom surface of the specimen. The contact analysis was performed using only two-
dimensional finite element models of the specimens as shown in Figure A4a. Only 20%
of the outer part of the roller was modeled with finite elements as shown in detail in
Figure A4b. A roller with a diameter of 4.73 mm was modeled which corresponds to the
roller diameter of the test fixture used in references 3&4. Material properties for the steel
rollers used in the simulation are given in Table 1. Displacements in x and y direction
were suppressed for all nodes along the inner radius of the model and along the line of
symmetry of the roller to simulate the rigid behavior of the roller. Contact was modeled
between two deformable bodies with small relative motion without friction using the
concept of master and slave surfaces available in ABAQUS® [6]. The top surface of the
elements in the refined section of the roller modeled made up the master, or target ,
surface as shown in Figure A4b, while the surface of the elements in the refined section
at the bottom of the specimen defined the slave or contact surface used in the analysis.

Contact Analysis results

The roller support was modeled and corresponding contact analysis was performed for
specimen configuration B2, only, because discrepancy in stresses between the finite
element and the beam theory results were most pronounced for this configuration as
shown in Figures 19-21. Additionally, the thinner 24-ply IM7/8552 B2 configuration
exhibited a more pronounced non-uniform stress distribution between the inner load
noses than the thick laminates. Therefore, the B2 configuration was modeled for the 24-
ply and 36-ply IM7/8552 layups and the 24-ply S2/8552 layup.

Figure A5 shows the finite element mesh for the 24-ply IM7/8552 carbon/epoxy material
B2 type specimen. The full specimen and the details are shown in the deformed position
at the failure load. As shown in the detail of Figure A5, contact occurs only locally. Due
to the local rotation of the specimen at the support, the contact location is changed and
moves inward which reduces the effective span s by about 0.6 mm at each support.

The tension stresses computed at the bottom of the specimen, using 2D contact analysis
where the roller support were modeled, are shown in Figures A6 a-c. The difference
between the beam theory and FE stresses for all configurations are lower compared to
results obtained from analysis where simple supported boundary conditions had been
used. This may be explained by considering equation (2). Because the distance between
the load points (s-¢) remains unchanged in the simulation, the reduction of the effective

span, s, causes the same reduction in the length, ¢ , which is used in equation (2) to

12



calculate the stresses. For all configurations investigated, the discrepancy between the FE
and beam theory results became smaller (max. 3%) when the rollers were modeled in
conjunction with contact analysis instead of simple supported boundary conditions.

TABLE I. MATERIAL PROPERTIES.

S2/8552 Unidirectional Glass-Epoxy Prepreg

E =471 GPa Ey»=12.27 GPa Es3=12.27 GPa
vi> =0.278 vi3=10.278 vy3 =0.403
G112 =4.83 GPa G13=4.83 GPa Go3 =4.48 GPa
IM7/8552 Unidirectional Carbon-Epoxy Prepreg
E1=161.0 GPa Ey» =11.38 GPa E33=11.38 GPa
vip =0.32 vi3=0.32 vy3=10.436
G12=5.17 GPa G13=5.17 GPa Gr3=3.98 GPa
Steel

E=210.0 GPa v=03
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B 50.8 A2 76.2 25.4 25.4

C 76.2 B2 76.2 12.7 50.8
B3 102 25.4 50.8

(a) 3-point bending (b) 4-point bending

Figure 1. Bending test configurations.
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Figure 2. Beam theory tension stress distribution on the bottom of beam.
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ns1 ns1 nt

L
y L: total specimen length
S: span between supports
X r: length of refined section around supports and load points

1. specimen thickness
nr: number of elements in refined section
ns1. number of elements in overhang

nso. number of elements in section between support and load point
nt: number of elements over the thickness

(a) Two dimensional FE model of three point bending specimen

P/2 P/2
ns1 nr ns1 nt
' t
| sL |
| s |
L
y
s-L: span between inner load points
X ns3: number of elements in the center section

(b) Two dimensional FE model of four point bending specimen

Figure 3. Two dimensional FE models and corresponding load and boundary conditions
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L: total specimen length

s: span

r: length of refined section around

supports and load points

1. specimen thickness

b: width

nr: number of elements in refined section
ns1. number of elements in overhang
ns»>: number of elements in section

40 RN
s\o Sadade
AR

between support and load point
nt: number of elements over the thickness

nb: number of elements across the width

s-L: span between inner load points

nb

nss: number of elements in the center section

Figure 4. Three dimensional FE model of four point bending specimen.
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Fig. 22 Deformed 3D FE model, S2/8552, Configuration B2
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Fig.24 Comparison of Discrepancy between Beam Theory and 2D and 3D
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calculate individual section lengths

A

open(unit=iunit,file=...
call header
open output file and write ABAQUS header

\

call net3d(...
call bound3d(...

determine net topology and
node number of boundary conditions

A

ABAQUS® input file
beam.inp

call genpco(...

generate nodal point coordinates

\

call lfront(...
call cfront(...

create node set for displacement output
create node set for stress output

A

call material(...
write material data to ABAQUS input file

Y

call abhist(...

calculate loads at nodal points and

write ABAQUS history and output commands

A
end

Figure A2. Flow chart of routine genbeam.f to generate finite element model.
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user specified

program stress
start program

INCLUDE ‘aba_param.inc’
enable access to ABAQUS files

A

integer elnum,...
real stress(6),...
character

assign arrays

\

input file
stress.data
contains loads,

read(nunit, *)word,bl, ...
read data from user input file

dimensions and
file names

y

call gstart(kunit,output)
open file for stress output

\

LRUNIT(1,1)=8
LRUNIT(2,1)=2

CALL INITPF (FNAME,NRU, ...
CALL DBRNU(JUNIT)

ABAQUS result file initialization

stress output file
beam.sig

h J

ABAQUS result file
binary format
beam.fil

CALL DBFILE (LOP,ARRAY, JRCD)
read each record of th

e ABAQUS result file

\

ELSE IF(KEY.EQ.11)THEN
call datin(head,1l,...
identify stress record and store data in array

call sort(iunit,kunit,...
sort stress data and write to output file

\

call gend(iunit)
close output file

A
end

Figure A3. Flow chart of routine stress.f to retrieve stresses at the bottom of the beam.
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P/2 P/2

detail *

s
L
y L: total specimen length
s: span between supports
X s-L: span between inner load points

t: specimen thickness

(a) Two dimensional FE model of four point bending specimen with modeled rollers

rr: radius of roller support

rt: modeled thickness

nt: number of elements over thickness

nrr1: number of elements outside the
contact region

nrro: number of elements in the

contact region

-0l 1 1 1 b—~] 1 -

\ contact surface

{slave)

nrro

target surface

nrr
1 {master)

'r Lrt.J nrt e initial contact

u=v=0 for all nodes along inner radius
and symmetry line of roller

(b) Detail of modeled roller and contacting surfaces
Figure A4. FE model with rollers and corresponding load and boundary conditions
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P2

P2

detail

y

detail

e points initially in contact

Figure AS5. Deformed FE model with details of modeled rollers and contacting surfaces
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